Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Science ; 378(6615): eabn5637, 2022 10 07.
Article in English | MEDLINE | ID: covidwho-2063967

ABSTRACT

Mammalian cells can generate amino acids through macropinocytosis and lysosomal breakdown of extracellular proteins, which is exploited by cancer cells to grow in nutrient-poor tumors. Through genetic screens in defined nutrient conditions, we characterized LYSET, a transmembrane protein (TMEM251) selectively required when cells consume extracellular proteins. LYSET was found to associate in the Golgi with GlcNAc-1-phosphotransferase, which targets catabolic enzymes to lysosomes through mannose-6-phosphate modification. Without LYSET, GlcNAc-1-phosphotransferase was unstable because of a hydrophilic transmembrane domain. Consequently, LYSET-deficient cells were depleted of lysosomal enzymes and impaired in turnover of macropinocytic and autophagic cargoes. Thus, LYSET represents a core component of the lysosomal enzyme trafficking pathway, underlies the pathomechanism for hereditary lysosomal storage disorders, and may represent a target to suppress metabolic adaptations in cancer.


Subject(s)
Golgi Apparatus , Lysosomal Storage Diseases , Lysosomes , Proteins , Animals , Golgi Apparatus/metabolism , Humans , Lysosomal Storage Diseases/genetics , Lysosomal Storage Diseases/metabolism , Lysosomes/metabolism , Mice , Protein Transport , Proteins/genetics , Proteins/metabolism , Transferases (Other Substituted Phosphate Groups)/genetics , Transferases (Other Substituted Phosphate Groups)/metabolism
2.
Cells ; 11(6)2022 03 08.
Article in English | MEDLINE | ID: covidwho-1760407

ABSTRACT

A distinct set of channels and transporters regulates the ion fluxes across the lysosomal membrane. Malfunctioning of these transport proteins and the resulting ionic imbalance is involved in various human diseases, such as lysosomal storage disorders, cancer, as well as metabolic and neurodegenerative diseases. As a consequence, these proteins have stimulated strong interest for their suitability as possible drug targets. A detailed functional characterization of many lysosomal channels and transporters is lacking, mainly due to technical difficulties in applying the standard patch-clamp technique to these small intracellular compartments. In this review, we focus on current methods used to unravel the functional properties of lysosomal ion channels and transporters, stressing their advantages and disadvantages and evaluating their fields of applicability.


Subject(s)
Ion Channels , Lysosomal Storage Diseases , Humans , Intracellular Membranes/metabolism , Ion Channels/metabolism , Ions/metabolism , Lysosomal Storage Diseases/metabolism , Lysosomes/metabolism , Patch-Clamp Techniques
SELECTION OF CITATIONS
SEARCH DETAIL